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ABSTRACT

Supercomputer design is a complex, multi-dimensional optimization process, wherein several subsystems
need to be reconciled to meet a desired figure of merit performance for a portfolio of applications and a
budget constraint. However, overall, the HPC community has been gravitating towards ever more FLOPS,
at the expense of many other subsystems. To draw attention to overall system balance, in this paper, we
analyze balance ratios and architectural trends in the world’s most powerful supercomputers. Specifically,
we have collected performance characteristics of systems between 1993 and 2018 based on the Top500
lists, and then analyzed their architectures from diverse system design perspectives. Notably, our analysis
studies the performance balance of the machines, across a variety of subsystems such as compute, memory,
I/O, interconnect, intra-node connectivity and power. Our analysis reveals that balance ratios of the various
subsystems need to be considered carefully alongside the application workload portfolio to provision the
subsystem capacity and bandwidth specifications, which can help achieve optimal performance.
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1. INTRODUCTION

For several decades, supercomputers have provided the needed resources for modeling, simulation and data
analysis in numerous scientific domains. The computing, storage and data resources offered by these
systems have catered to both capability—requiring a large fraction of the machine—and
capacity—needing medium-sized allocations—computing needs of applications [12]. The Top500 list [6]
provides an excellent service to the HPC community by meticulously compiling the leading systems from
the world based on the High Performance Linpack (HPL) benchmark [13], and publishing it bi-annually
since 1993. The list reports key high-level architectural highlights (e.g., processor, interconnect type,
memory, power, etc.) and FLOPS scores (Rmax and Rpeak).

Supercomputer design is a complex, multi-dimensional optimization process, in which several
aforementioned vectors (and others such as storage) need to be reconciled in order to meet a desired figure
of merit performance for a portfolio of applications and a budget constraint. For example, the goal of the
Summit system at Oak Ridge National Lab (200 petaflop Rpeak, 148.6 petaflop Rmax and No. 1 in the June
2019 Top500 list) was to achieve a 5-10× performance improvement over its predecessor, Titan (the 27
petaflops system). In addition, the application workload mix has also been going through a transformation,
with several supercomputing centers having to deal with new and emerging machine and deep learning
codes, on top of the traditional modeling and simulation applications. Thus, during this process, it is
natural that certain subsystems will be prioritized over certain others.

However, overall, the HPC community has been gravitating towards ever more FLOPS, at the expense of
many other subsystems. While in theory it may seem obvious that a balance between the various
subsystems is more important than just blindly prioritizing any one subsystem, in practice, however, this is
seldom the case. Time and again, it is easier for centers to make a case for more FLOPS than for other
subsystems. In reality, however, simply increasing the FLOPS may not improve application throughput if
the other subsystems do not witness commensurate advances, as the end-to-end application performance is
also dependent on other elements such as memory bandwidth, I/O throughput (for result and checkpoint
data), and the like.

Therefore, what is needed is a careful consideration of the overall system balance and how the various
subsystems reconcile with one another. System designers need to understand the trends not only within the
individual subsystems but also with respect to one another. For example, one needs to understand the
FLOPS trends in accelerator-based heterogeneous processors versus manycore processor architectures, but
at the same time glean the nuances in FLOPS to memory bandwidth or memory capacity ratios; or memory
bandwidth to intra-node connectivity bandwidth ratios; or file system to memory subsystem ratios; or
interconnect to FLOPS ratios. Understanding the tradeoffs between the various subsystems will enable
system designers to reconcile and provision them carefully, instead of producing suboptimal configurations
that may be prone to performance bottlenecks.

In this paper, we conduct a detailed analysis of 26 years of Top500 lists since 1993, studying 10,708
supercomputers across several dimensions. Specifically, our contributions in this paper are as follows.

• We collect data from the Top500 lists and analyze detailed trends based on 10,708 supercomputers that
have ranked in the list for the past 26 years between 1993 and 2018 (§ 4.1). We present performance and
energy trends such as the following: the progressive increase in HPL scores over time, their comparison
to Moore’s law prediction, and the inflection point; the performance gap (factor) between the top
systems and the lower-end systems; the historical trend in energy efficiency of systems and positions of
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the No.1 systems; the trend in performance efficiency, i.e., the practical achievement of the theoretical
peak performance by majority of the systems; and the commonly observed increasing trend in
heterogeneous systems.

• We then select 27 systems, ranked in the top five in the past decade, i.e., between 2009 and 2018, and
perform a deeper analysis on their architectural balance trends, including memory, file system, and
interconnect (§ 4.2). We present the following results: the differences in the performance and energy
efficiency of heterogeneous and traditional systems and the memory/core differences therein; the balance
ratio between the memory subsystem and compute subsystem; the balance ratios between the memory,
file system and the burst buffer subsystems; the balance ratios between network bisection and node
injection bandwidth and the importance therein; and the correlation between interconnect performance
and the over system performance efficiency.

• Lastly, we further select 15 heterogeneous machines from the 27 recent top five supercomputers and
analyze the performance balance between the subsystem components for each recent heterogeneous
system (§ 4.3). In this analysis, we particularly target the balance ratios and trends involved in newer
technologies within a heterogeneous compute node such as multi-level memory and intra-node
connectivity, both of which are essential in heterogeneous systems. We analyze the importance of
memory (both DRAM and HBM) capacity and bandwidth per core and five different connections
representing key intra-node links, and their relevance to different aspects of applications.

2. BACKGROUND: TOP500

In this section, we briefly introduce the Top500 project [6] and the resources it provides, which allow us to
establish a basis for performing our analysis.

Since it was first launched in 1993, the Top500 project has been publishing a list of 500 of the world’s most
powerful supercomputers bi-annually, i.e., June and November in each year, on the project website [6].
Between 1993 and 2018, the project website has published 52 lists, which encompass 10,708
supercomputers from 2,894 institutions in the world. For compiling the list, the project evaluates
supercomputers based on the High Performance Linpack benchmark (HPL) score, which assesses the
runtime and accuracy of a distributed memory system in solving a dense linear system using double
precision arithmetic [13]. Specifically, the participating supercomputers are ranked based on the number of
floating point operations per second, or FLOPS. In addition to its semi-annual lists, the Top500 project also

Table 1. An example of the supercomputer specification from the Top500 data
Attribute Example
Supercomputer Summit
Installation site DOE/SC/Oak Ridge National Laboratory
Total cores 2,397,824
Accelerator cores 2,196,480
Total memory capacity 2,801,664 GB
Processor type IBM POWER9 22C 3.07GHz
Network interconnect family Dual-rail Mellanox EDR Infiniband
Theoretical Peak (Rpeak) 200,795 TFlop/s
Linpack Performance (Rmax) 143,500 TFlop/s
Power consumption 9783 kW

2



publishes additional resources, e.g., useful statistics, interactive graphs, etc., via the project website.
Particularly, the Top500 website publishes key specifications of individual supercomputers, e.g., processor
type, memory capacity, interconnect family, etc., and such information, when combined with the
semi-annual lists, can provide excellent insights on examining historical or recent trends in
supercomputing [22, 16, 9, 8]. In this paper, we use the term Top500 data to refer to all available data that
Top500 publicly publishes, including the semi-annual lists and the individual supercomputer specifications.

Table 1 shows an example specification of a supercomputer from the Top500 data. Particularly, the Rpeak

value is calculated based on the FLOPS values of all individual processing chips in the system, e.g., CPUs,
GP-GPUs, etc., and demonstrates an ideal performance of the supercomputer without considering any
potential overhead, e.g., network communication, data I/O, software algorithm, etc. In contrast, Rmax is a
measured score that has been acquired after running the HPL benchmark. Therefore, comparing the Rpeak

and Rmax values provides a reasonable assessment of the overall processing efficiency of a supercomputer.
For instance, the Summit supercomputer in Table 1, achieves approximately 71% of the ideal performance
when running the HPL benchmark. Despite its abundance, the Top500 data lack comprehensive
information about supercomputers, such as network bandwidth, file system performance, burst buffer
capacity/performance, intra-node connectivity details, DRAM/HBM performance, etc., which is necessary
for performing analysis on the architectural balance of a system. Therefore, we have collected extensive
additional data through literature survey to fill in the gaps.

3. ANALYSIS OVERVIEW

In this section, we present our goals for analyzing the architectural trend of supercomputers based on the
Top500 lists. Specifically, we perform analysis based on the following three analysis goals.

Overall performance trend (§ 4.1). Top500 adopts the High Performance Linpack (HPL) benchmark
score [13] for normalizing performance and ranking supercomputers. However, the HPL score is a macro
benchmark for measuring the aggregated processing power, and the score alone is a limited metric when it
comes to unveiling the sophisticated architectural trends in supercomputers. We analyze the individual
performance factors and find their correlations with the HPL scores.

Balance trends in recent supercomputers (§ 4.2). In this dimension, we perform a deeper analysis of the
architectural trends and performance balance of the recent top five supercomputers on the Top500 list in the
past decade. Specifically, we collect detailed information for each of the recent top supercomputers, and
perform further analysis on the performance balance between the processing power and other subsystems
in a supercomputer, e.g., memory, storage, burst buffer and network.

Balance trends in heterogeneous supercomputers (§ 4.3). Heterogeneous machines are becoming
increasingly popular for achieving the desired system efficiency within the given budget and energy
requirements [16]. We aim to identify key architectural trends and balance ratios from recent
heterogeneous systems, e.g., intra-node connectivity and memory subsystem balance, and acquire insights
for designing future systems.

For performing our analysis, we have collected available datasets from the Top500 website and also
manually surveyed the detailed specification of individual target supercomputers for complementing the
Top500 data.
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Figure 1. The growth of the linpack performance for the past 26 years (from 1993 to 2018). The
graph depicts the HPL score distribution of 500 supercomputers for each year. The first tera-scale
supercomputer (scored over 1 TFlop/s) was ASCI Red, and the first peta-scale supercomputer was
Roadrunner.

4. ANALYSIS RESULTS

Based on the aforementioned goals (§ 3.), this section reports analysis results, namely, overall performance
trend (§ 4.1), balance trends in recent supercomputers (§ 4.2), and performance balance in heterogeneous
supercomputers (§ 4.3).

4.1 OVERALL PERFORMANCE TREND

We first study the overall performance trend in the Top500 list of systems over the past 26 years.
Particularly, we analyze the trend in High Performance Linpack (HPL) scores of all 10,708 supercomputers
that have appeared in Top500 between 1993 and 2018.

4.1.1 The growth of HPL scores
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Figure 2. Rmax of the No.1 supercomputers. The
scores are normalized to the ideal projected score
of Moore’s Law [23] since 1993 and is shown by the
dotted line.

Figure 1 depicts the trend of Rmax scores,
i.e., the maximum observed performance (§ 2.),
of all supercomputers that have appeared in the
Top500 listings since 1993. We clearly observe a
continuously increasing trend in performance over
the past 26 years. On average, a newly introduced
No.1 supercomputer has doubled the Rmax

score of its immediate predecessor. In addition,
ASCI Red (1997) first recorded over a TFlop/s,
while Roadrunner (2008) was the first petascale
supercomputer. In Figure 2, we also compare
the performance of No.1 machines against the
prediction of Moore’s Law [23]. Specifically, we
normalize the Rmax scores of No.1 machines based on the Rmax score of the CM-5/1024, the No.1 machine
in June 1993. We also project the ideal Rmax scores based on the Moore’s Law, i.e., the chip density and
performance doubles every 18 months, using a dotted line. We observe that all No.1 machines since 1997
perform beyond the prediction of the Moore’s Law. Particularly, the Rmax score of Tianhe-2A in 2013
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exceeds the projection of Moore’s Law by almost 100×. The most recent Summit supercomputer exhibits
Rmax that surpasses the projection by 18×. This demonstrates that the HPC systems address the physical
limitation of the chip density by introducing multi-processing and heterogeneous architectures [24].

4.1.2 Low-end supercomputers

Another notable trend in Figure 1 is a highly skewed distribution of the Rmax scores in all years, indicating
a significant performance gap between high-end and low-end supercomputers. To articulate the trend, in
Figure 3, we normalize Rmax scores to the maximum score in each listing. We observe that 75% of the
systems in each listing, i.e., 375 machines, scored at least an order of magnitude less than the No.1
supercomputer. The performance gap is widest in the June 2013 Top500 list, when the median HPL score
of 500 systems was almost 400× lower than the score of Tianhe-1A. Although the performance gap is
becoming narrower since then, the median HPL score in 2018 is still more than 100× lower than the top
score.

4.1.3 Energy efficiency

One of the important metrics in evaluating system performance is energy efficiency, which is often
measured by Flops per watt (W). Figure 4(a) shows the energy efficiency of clusters from the Top500
listings since 2005 *. We clearly observe an increasing trend in energy efficiency. Particularly, for each
listing, the median energy efficiency of the corresponding 500 systems has increased by 1.2× on average.
In addition, with the exception of 2005, the energy efficiency of the No.1 supercomputers is steadily
positioned within the top 25%, demonstrating that the No.1 machines tend to run more energy efficiently
than other machines. To further investigate this observation, we studied the correlation between the Top500
rank and energy efficiency, as shown in Figure 4(b). Each point in Figure 4(b) specifies the Pearson’s
correlation coefficient †, where the energy efficiency is described as a function of the rank in the
corresponding Top500 listing. We see that the strong negative correlation in earlier years, i.e., higher
performance supercomputers being less energy efficient, is no longer the case in recent years (although no

*The earlier listings do not provide sufficient data about power consumption.
†The Pearson correlation coefficient, ρ, is defined as covariance of the variables (e.g., X and Y) divided by the product of their

standard deviations, i.e., ρ =
cov(X,Y)
σXσY

. A ρ value (ranging between -1 and 1) close to 0 indicates that no significant linear correlation
is found.
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Figure 3. The distribution of normalized HPL scores in Top500. This clearly demonstrates a signifi-
cant performance gap between the top and the rest supercomputers. In 2018, for instance, the HPL
score of the No.1 supercomputer (Summit) is more than 100× greater than the median HPL score of
the year.
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(a) System power efficiency. (b) Top500 rank and power efficiency.

Figure 4. Trends in the power efficiency in Top500 supercomputers. Over the past 26 years, the power
efficiency of highly ranked supercomputers have been increasing.

positive correlation). Evidently, Summit (2018), the No.1 supercomputer in Top500, is also ranked No.2 in
the Green500 [3] list for June 2019.

4.1.4 Performance efficiency

We now study the performance efficiency of systems, which we calculate as a ratio of Rmax to Rpeak, or
Rmax
Rpeak

[16]. The average performance efficiency of 10,708 systems * is 0.67, indicating that most machines
merely achieve less than 70% of their potential performance. Figure 5 further presents the annual trend in
performance efficiency. In contrast to power efficiency (Figure 4), we do not observe an increasing trend in
performance efficiency. Instead, on average, the median performance efficiency has decreased by about 4%
each year. In addition, we also see that the performance efficiency of the No.1 supercomputers fluctuates
heavily, which is a notable contrast to their power efficiency trend (Figure 4). For instance, the performance
efficiency of the K Computer (2011) is 0.93, while 77% of No.1 supercomputers (40 out of 52) record
performance efficiency scores below the overall median (0.67). Furthermore, performance efficiency in our
analysis, which includes all systems in Top500, is about 15% lower than the earlier analysis with Top 10
supercomputers [16].

4.1.5 Achieving higher performance

A key factor in achieving a higher HPL score is to have a strong computing power. For this purpose, recent
supercomputers tend to be equipped with a massive number of computing cores, as reported earlier in

*Rpeak scores of some earlier supercomputers prior to 1994 are not available.
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Figure 5. The trend of the performance efficiency, i.e., Rmax : Rpeak, in Top500 supercomputers. In
contrast to the performance efficiency does not exhibit a clear increasing trend.
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Figure 6. Trends in the correlation between performance and system attributes. Besides the number
of cores, the memory capacity has also become a major factor to deliver a higher performance.

§ 4.1.1. Therefore, we now analyze how the total core count of a supercomputer affects its Rmax score.
Specifically, we performed a correlation analysis between Rmax score and total core count for each year, as
depicted in Figure 6. We observe the correlation coefficient (ρ) between HPL score and total core count is
highest between 2013 and 2016, i.e., 0.95 on average. However, ρ drops drastically starting from 2017 that
the average ρ between 2017 and 2018 is only 0.66, more than 30% lower than the previous year. One
reason for this weaker correlation can be attributed to the increasing number of heterogeneous
supercomputers, which we discuss further in § 4.3. In addition, Figure 6 also shows the correlation
between HPL score and memory capacity. Starting from late 2009, the correlation between HPL score and
memory capacity becomes noticeably higher, i.e., 0.74 on average between 2009 and 2018.

4.1.6 Heterogeneous supercomputers
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Figure 7. The increasing number of heterogeneous
supercomputers in Top500 since 2011.

Figure 7 shows the percentage of
heterogeneous supercomputers, i.e., systems with
additional accelerator processors such as GP-GPU,
in the recent Top500 listings. For the past
eight years, the number of heterogeneous systems
in the listings has steadily increased, i.e., 1% or
five systems annually, and they occupy about 28%
(139 systems) in November 2018. We expect that
this increasing trend will continue, particularly for
addressing technological limitations (§ 4.1.1) and also for controlling the power consumption.

4.2 BALANCE TRENDS IN RECENT SUPERCOMPUTERS

In this section, we perform a deeper analysis on the performance trend in recent top supercomputers.
Specifically, we focus on supercomputers that have ranked in the top five positions on the Top500 listings
in the last decade, i.e., between 2009 and 2018. As summarized in Table 2, our target supercomputers
consist of 15 heterogeneous (F) and 12 traditional (m) supercomputers.

4.2.1 Overall system efficiency
Figures 8(a) and (b) show the performance efficiency (Rmax:Rpeak) and power efficiency (Rmax:Power) of
these supercomputers. We first observe that heterogeneous systems dominate the architectural trend in the
top supercomputers. Particularly, since November 2017, all top five supercomputers are heterogeneous,
indicating that the increasing popularity of the heterogeneous architecture (§ 4.1.6). Furthermore, in
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Table 2. System characteristics of 27 supercomputers that have marked top five in Top 500 from 2009
to 2018.

Top500 Rank Efficiency Memory (M) Storage Network
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’1
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’1

3/
11

’1
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06
’1

4/
11

’1
5/

06
’1

5/
11

’1
6/

06
’1

6/
11

’1
7/

06
’1

7/
11

’1
8/

06
’1

8/
11 Rmax Rmax Cap. ΣBW Cap (ΣM=1) BW (ΣM=1) Bisection BW

to Rpeak to Power per Core to Rmax PFS BB PFS BB to ΣInjection BW

m BlueGene/L 5 0.80 0.21 0.35 1.18 2.60 · 0.0000 · 0.0038
F Roadrunner.1 2 3 0.76 0.44 5.98 0.27 28.56 · 0.0001 · 0.0627
F Roadrunner.2 ¶ 0.76 0.45 5.98 0.27 26.97 · 0.0001 · 0.0593
m Jaguar.1 2 0.77 0.15 2.05 0.34 34.13 · 0.0005 · 0.0072
m Pleiades 4 0.80 0.23 1.00 0.05 139.26 · 0.0017 · ·

m JUGENE 3 4 5 0.82 0.36 0.50 0.98 14.22 · 0.0000 · 0.0046
F Jaguar.2 ¶ ¶ 2 3 3 0.74 0.38 1.07 0.25 32.80 · 0.0004 · 0.0142
m Kraken 3 4 0.81 0.27 1.52 0.23 22.99 · 0.0001 · ·

F Tianhe-1 5 0.47 0.37 1.55 0.79 9.46 · 0.0003 · ·

F Nebulae 2 3 4 4 0.43 0.49 2.22 0.41 2.49 · 0.0001 · ·

F Tsubame-2.0 4 5 5 0.52 0.85 1.34 0.59 59.90 1.72 0.0001 0.0005 1.2291
F Tianhe-1A ¶ 2 2 5 0.55 0.64 2.92 0.25 8.36 · 0.0003 · ·

m Hopper 5 0.82 0.36 1.45 0.41 9.44 · 0.0001 · ·

m K Computer ¶ ¶ 2 3 4 4 4 4 4 4 5 0.93 0.83 2.00 0.46 22.31 8.18 0.0001 0.0002 0.0741
m Sequoia ¶ 2 3 3 3 3 3 3 4 4 5 0.85 2.18 1.00 0.20 36.67 · 0.0004 · 0.1221
m Mira 3 4 5 5 5 5 5 5 0.85 2.18 1.00 0.20 46.67 · 0.0001 · 0.0682
m Super MUC 4 0.91 0.85 2.00 0.29 53.33 · 0.0003 · 0.2778
m JUQUEEN 5 0.85 2.18 1.00 0.20 0.22 · 0.0001 · 0.0112
F Titan ¶ 2 2 2 2 2 2 3 3 4 5 0.65 2.14 2.37 0.20 44.30 · 0.0002 · 1.1158
F Tianhe-2A ¶ ¶ ¶ ¶ ¶ ¶ 2 2 2 2 4 4 0.61 3.32 8.00 0.07 5.83 · 0.0002 · 0.1918
F SW TaihuLight ¶ ¶ ¶ ¶ 2 3 0.74 6.05 16.00 0.09 8.00 · 0.0000 · 0.1094
m Cori 5 0.50 3.56 1.66 0.19 27.40 1.83 0.0001 0.0003 0.4814
F Piz Daint 3 3 5 0.78 8.91 2.23 0.06 46.06 · 0.0001 · 0.7703
F Gyoukou 4 0.68 14.17 33.94 0.03 24.67 · 0.0013 · ·

F ABCI 5 0.61 12.06 12.82 0.13 41.32 3.26 0.0004 0.0008 0.6995
F Summit ¶ ¶ 0.71 14.67 9.64 0.13 88.59 2.62 0.0001 0.0004 1.0222
F Sierra 3 2 0.75 12.72 7.52 0.14 110.00 5.06 0.0001 0.0005 0.5120
(a) m and F indicate that the corresponding supercomputer has homogeneous or heterogeneous architectures, respectively.
(b) The color intensity shows the comparison between values within the corresponding column.
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(a) Performance efficiency. (b) Power efficiency.

Figure 8. Trends of performance and power efficiency in recent top five supercomputers. The hetero-
geneous architecture clearly improve the power efficiency but also imposes challenges to increase the
performance efficiency.

Figure 8(a), we notice that heterogeneous systems tend to exhibit a lower performance efficiency, i.e.,
achieving less than 80% of the theoretical peak performance (Rpeak). In contrast, Figure 8(b) shows that the
power efficiency of heterogeneous systems far exceed that of traditional systems, especially since 2017.
Specifically, the average power efficiency of the heterogeneous machines (5.5 GFlops/Watt) is about five
times higher than the average power efficiency of the traditional machines (1.1 GFlops/Watt). Our
observation clearly demonstrates the benefit, i.e., energy efficiency, and also challenges, i.e., technical
obstacles to realize the potential performance [11], of the heterogeneous architecture.
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(a) Memory capacity per core. (b) Memory bandwidth per Flops.

Figure 9. Performance balance in system memory. Despite the increasing performance of the memory
system, the per Flops memory bandwidth has decreased due to the growth of the processing power.

4.2.2 System memory

Next, we analyze the performance trend in the memory subsystem. For heterogeneous systems, the
memory capacity and bandwidth are the sums of the DRAM and HBM capacity and bandwidth. First,
Figure 9(a) shows the trend in the memory capacity per core (ΣMemoryCap:ΣCoresTotal) of recent top
machines. We observe that most systems are clustered around 1 GB in the graph. Only three
supercomputers, i.e., Jaguar.1, K Computer, and Super MUC, furnish more than 2 GB of memory per
processing core. In addition, the per-core memory capacity of heterogeneous supercomputers (0.7 GB on
average) tend to be lower than the per-core memory capacity of traditional systems (1.3 GB on average),
although the heterogeneous systems tend to be equipped with a greater amount of system memory (more
than 300 TB on average). This indicates that the increase in the core count from accelerators, e.g.,
GP-GPU, is greater than the increase of memory (HBM) from accelerators in the heterogeneous machines.
In fact, in the heterogeneous systems, the average HBM capacity per accelerator core is merely 0.2 GB,
about 14× less than the average DRAM capacity per CPU core (3.3 GB).

Next, Figure 9(b) depicts the performance balance between the aggregate memory bandwidth and the peak
processing power (ΣMemoryBW:Rpeak) of the target supercomputers. Overall, we clearly see a diminishing
trend in the balance ratio, indicating that the processing power grows faster than the system memory speed.
For instance, the highest ratio value in 2019, i.e., 0.13 from Summit, is about 9× lower than the highest
ratio in 2009, i.e., 1.2 from BlueGene/L. Further, after 2011, none of the top systems exceed 0.5 B/s per
Flops (more on this in § 4.3). This observation conforms to the limitation of provisioning the memory
bandwidth in the modern processor design [15].

4.2.3 Parallel File System

Most supercomputers are equipped with a networked parallel file system (PFS) to support capacity
requirements of running applications. The main memory is inevitably used as a buffer space for
manipulating datasets in the PFS. Therefore, we analyze the performance balance between the PFS and the
memory subsystem. Figure 10(a) and (b) show the capacity and bandwidth ratios between PFS and
memory subsystem, i.e., PFSCap:ΣMemoryCap and PFSBW:ΣMemoryBW, respectively. Note that we only
consider scratch file systems that parallel applications primarily exploit for storing data, i.e., excluding
NFS /home and archival storage areas. For the file system capacity (Figure 10(a)), we observe that the ratio
values are scattered between 2 and 100, except for two systems, i.e., Pleiades and Gyoukou, which provide
substantially larger file system space compared to their memory capacity, i.e., 140× and 410×, respectively.
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(a) Capacity ratio. (b) Bandwidth ratio.

Figure 10. Performance balance between file system and memory subsystem. We do not observe a
drastic change in the file system capacity and bandwidth. On average, the file system capacity and
bandwidth are about 44× larger and 13,353× slower, respectively, than the system memory capacity
in the recent top five supercomputers.

The overall average ratio is 44, meaning that the recent top supercomputers tend to provision the PFS
capacity to be 44× larger than their memory capacity. Summit has a ratio of 89, almost 2× greater than the
overall average. Note that a smaller capacity ratio between the PFS and memory requires a more frequent
purge operations to guarantee a sufficient capacity in the PFS, while a larger capacity allows a longer
retention of data in the PFS. Similar to the capacity ratio, we do not observe a clear change over time in the
bandwidth ratio (Figure 10(b)). On average, the file system bandwidth in the recent top systems are
13,353× lower than the aggregated memory bandwidth, although we have observed significant variance
(σ=17,000) among these systems. The PFS in Summit is about 10,000× slower than its aggregated memory
speed, justifying a burst buffer.

4.2.4 Burst Buffer Storage

The burst buffer (BB) has recently become popular to mitigate the performance gap between memory and
file system [19]. Seven out of the 27 recent top systems (Table 2) have BB storage, either within a compute
node or in a dedicated set of nodes, e.g., IO forwarding nodes, inside the cluster. In Figure 11, we compare
the (a) capacity and (b) bandwidth of the aggregated system memory, BB, and PFS of each of these seven
systems, i.e., (a) ΣMemoryCap:PFSCap:BBCap and (b) ΣMemoryBW:PFSBW:BBBW, respectively. From
Figure 11(a), we see that the BB capacity of most machines range between the capacity of memory and
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Figure 11. Burst buffer characteristics in seven recent supercomputers. In these supercomputers, the
burst buffer capacity is about 3× larger than the system memory, and its bandwidth is about 3× faster
than the bandwidth of the parallel file system.
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PFS except for Tianhe-2A, which employs SSDs in its 256 IO forwarding nodes [28]. On average, the BB
capacity is about 3× larger than the memory capacity, and the K Computer exhibits the highest ratio, i.e.,
8× larger than the memory capacity. Similarly, the BB bandwidth also ranges between the memory
bandwidth and the PFS bandwidth, as depicted in Figure 11(b). However, the bandwidth gap between
memory and BB is noticeably large in all seven systems. On average, the BB bandwidth in the seven
systems is about 3.2× greater than the PFS bandwidth but also about 3,065× slower than the total memory
bandwidth. In addition, compared to the earlier systems (e.g., K Computer, Cori, etc.), Summit and Sierra
provide a significantly higher BB bandwidth (i.e., 9.7 TB/s and 9.1 TB/s respectively) with a less number
of compute nodes and SSDs.

BBs are much lower in capacity compared to the PFS and can typically accommodate 2-3 snapshots of a
system memory checkpoint (e.g., Summit’s 512GB of DRAM compared to 1.6TB of node-local SSD.)
Another emerging provisioning strategy is to combine the salient properties of a BB (high rates) and a PFS
(better reliability and capacity) into a single flash-based storage tier (e.g., the Perlmutter system at NERSC
in 2020). While it can offer better rates, a high-capacity, all-flash tier will be cost prohibitive (Perlmutter’s
all-flash PFS offers 4TB/s but only around 30PB). The intent is for such a tier to be backed by a project or a
campaign storage with larger capacity. On the flip side, future systems such as OLCF’s Frontier system in
2021 will continue to provide a node-local flash-based BB and an HDD-based PFS, with 2-4x capacity and
bandwidth compared to OLCF’s Summit BB and PFS, respectively (BB: 7.4PB, 9.7TB/s; PFS: 250PB,
2.5TB/s; the PFS also caters to medium-term analysis needs like a project store). Consequently, the
deep-storage hierarchy on the high-end systems is still evolving to better fit the various usage scenarios at
the respective centers.

4.2.5 Interconnect network

The interconnect performance is a crucial factor that affects the capability of a supercomputer when it
comes to processing large-scale, inter-node jobs. We summarize the networking performance
characteristics of the 27 recent top supercomputers in Figure 12. Note that we could not find the bisection
bandwidth information from seven systems (marked ‘NA’ in Table 2) and exclude such systems in
Figure 12. First, Figure 12(a) shows the ratio between the bisection bandwidth and the total injection
bandwidth (NetworkBWBisection: ΣNetworkBWInjection), demonstrating how efficiently the global
interconnection network of a supercomputer can handle the communication requests from individual
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Figure 12. Performance trend in the interconnect network. (a) shows the interconnect network per-
formance in processing all-to-all communication. (b) demonstrates that the interconnect network
performance does not exhibit a strong correlation to the HPL performance efficiency.
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compute nodes at the full scale. We observe that the bisection bandwidth in most systems are substantially
lower than the total injection bandwidth, i.e., the aggregated injection bandwidth from all compute nodes.
On average, the bisection bandwidth is 32% of the total injection bandwidth for the 20 systems. However,
three supercomputers, i.e., Tsubame-2.0 (ratio of 1.2, non-blocking fat tree), Titan (1.1, 3D torus), and
Summit (1.0, non-blocking fat tree), show bisection bandwidth exceeding the total injection bandwidth,
indicating that the bisection bandwidth in these systems does not impose a bottleneck in global
communications such as all-to-all communication. Although it is ideal to design a system bisection
bandwidth to suffice the total injection bandwidth, but it needs to be weighed against design factors, e.g.,
target application communication profile, budget, etc.

Next, Figure 12(b) shows the correlation between this interconnect performance, i.e., the ratio of the
bisection bandwidth to the total injection bandwidth, and the overall performance efficiency, i.e.,
Rmax : Rpeak (§ 4.1.4). We do not find any strong correlation between the overall performance efficiency and
the interconnect network performance. This weak correlation suggests that the network performance does
not substantially impact the ability to acquire a high score in the HPL benchmark. However, depending on
the target environment and mission, attaining a high bisection bandwidth for a system may be necessary.
For instance, a recent analysis of the five-year job log from Titan suggests that over 54% of the CPU hours
were consumed by large-scale jobs (using more than 2,048 compute nodes) even though 90% of the
submitted jobs were using less than 256 compute nodes [27]. In such an environment, a sufficient bisection
bandwidth is essential for supporting large-scale jobs.

4.3 PERFORMANCE BALANCE IN HETEROGENEOUS SUPERCOMPUTERS
In this section, we analyze the performance balance in intra-node connectivity of the 15 heterogeneous
supercomputers from the 27 top recent supercomputers (§ 4.2). For each heterogeneous supercomputer, we

Table 3. Performance balance ratio in the 15 recent heterogeneous supercomputers.
CN Flops Intranode Connectivity System Efficiency

CPU ACC CPU-CPU CPU-ACC ACC-ACC RSD Performance Power
(GFlops) (GFlops) (GB/s) (GB/s) (GB/s) (σ:µ) (Rmax:Rpeak) (GFlops/Watt)

R.Runner.1 14.4 435.2 12.80 2.00 25.60 1.75 0.76 0.44
R.Runner.2 14.4 435.2 12.80 2.00 25.60 1.75 0.76 0.45
Jaguar.2 288.4 665.0 · 8.00 · 3.17 0.74 0.38
Tianhe-1 270.0 224.0 11.20 8.00 8.00 3.08 0.47 0.37
Nebulae 127.6 515.2 12.80 8.00 8.00 0.87 0.43 0.49
Tsubame-2.0 152.0 1,545.0 12.80 8.00 8.00 1.72 0.52 0.85
Tianhe-1A 140.6 515.0 12.80 8.00 8.00 5.39 0.55 0.64
Titan 144.2 1,341.4 · 8.00 · 2.28 0.65 2.14
Tianhe-2A 422.4 5,033.2 16.00 15.75 · 2.15 0.61 3.32
SW TaihuLight 95.0 3,040.3 16.00 · 16.00 1.75 0.74 6.05
PizDaint 166.4 4,812.8 · 15.75 · 2.22 0.78 8.91
Gyoukou 332.8 23,511.0 · 15.75 15.75 0.46 0.68 14.17
ABCI 3,840.0 28,672.0 20.80 15.75 50.00 5.52 0.61 12.06
Summit 1,105.9 43,008.0 64.00 50.00 50.00 2.06 0.71 14.67
Sierra 1,105.9 28,672.0 64.00 75.00 75.00 2.04 0.75 12.72

(a) CN Flops column shows the breakdown of the Flops performance between CPUs and accelerators (ACC) in a
compute node.
(b) RSD column lists the relative standard deviation from bandwidth of main memory, HBM, CPU-to-CPU, CPU-to-

ACC, ACC-to-ACC, and network injection.
(c) A smaller RSD value indicates a smaller bandwidth variance among those intra-node connections.
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further summarize important characteristics of the intra-node connectivity in Table 3.

4.3.1 Provisioning Accelerators

We first analyze the proportion of accelerators in the overall system performance for the 15 heterogeneous
supercomputers. Figure 13(a) depicts the Flops (Rpeak) ratio between the conventional CPU and the
accelerators for each heterogeneous system (ΣFlopsCPU:ΣFlopsACC). It is clearly noticeable that the
accelerator dominates the overall performance in most heterogeneous systems. For the 15 heterogeneous
systems, the accelerators contribute to 84% of the system Rpeak on average, and Jaguar.2 is the only
machine wherein the accelerators produce less than 50% of the system Rpeak. However, Jaguar.2 was in a
partial upgrade phase from Cray XT5 to XK6 in November 2009 (Table 2) and thus only 960 out of 18,688
compute nodes had GP-GPUs [10]. Recent Summit and Sierra systems rely on the accelerator for more
than 95% of overall system Flops. This indicates that it is essential to utilize the accelerators efficiently to
fully exploit the processing power of heterogeneous supercomputers.

Figure 13(b) shows the capacity between DRAM (for CPUs) and HBM (for accelerators), i.e.,
ΣDRAMCap:ΣHBMCap. Despite the strong dominance of the accelerators in Rpeak, the DRAM capacity still
dominates the HBM capacity in many heterogeneous systems. On average, DRAM provides 68% of total
system memory capacity. Besides the higher cost of HBM, this is also because the CPUs require more
memory for arbitrating the tasks among accelerators and also for handling other system demands, e.g.,
running the operating system. In contrast, most accelerators primarily perform computational tasks. In
addition, systems may also be provisioning more DRAM to accommodate CPU-only jobs. For instance,
even on heterogeneous systems, there is a significant fraction of CPU-only jobs due to slower adoption of
GPUs (e.g., GPU adoption on the Titan supercomputer was only 28% in 2018 [27]) or some codes may not
be amenable to the GPU and the system may need to support them anyway. While such jobs will not be
using the full potential of the system, it may be necessary for the system to accommodate them in its
portfolio. In such cases, one approach to still effectively utilize the node would be to multiplex CPU-only
jobs and GPU-based jobs. For example, one can co-locate the post-processing analysis of an end-to-end
job (simulation + data analysis) on the same CPU/GPU node, wherein a GPU-based simulation is
multiplexed with the CPU-based analysis in an in-situ fashion [18].

In Figure 13(b), only four heterogeneous systems, i.e., Roadrunner.1, Roadrunner.2, Tianhe-2A, and
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Figure 13. Provisioning the accelerators. (a) shows the ratio of the system Flops (Rpeak) between CPUs
and accelerators. (b) shows the capacity ratio between system main memory and HBM.
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Gyoukou, feature more amount of HBM than the amount of DRAM. Interestingly, these four machines are
equipped with accelerators that are not GP-GPUs. For instance, Gyoukou is equipped with the PEZY-SC2
accelerators [5], and the accelerator memory provides 95% of the overall memory capacity. Similarly,
Roadrunner and Tianhe-2A adopt the IBM PowerXCell 8i processor and the in-house developed
Matrix2000, respectively, for their accelerators.
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Figure 14. The performance balance of memory subsystem in 15 recent heterogeneous supercomput-
ers. The per-core memory capacity if about 15× higher for CPUs. Also, despite the higher memory
bandwidth of HBMs, the bandwidth to Flops ratio is lower for accelerators due to their higher Flops
count.

4.3.2 Memory Subsystem

In § 4.2.2, we have studied the performance trend in system memory for 27 recent top supercomputers. In a
heterogeneous architecture, however, accelerators are commonly installed with a dedicated memory system
that can be independent to the system main memory. Therefore, for the 15 heterogeneous supercomputers,
we separately analyze the performance balance of the two different memory types, i.e., the system main
memory for CPUs and the HBM for accelerators. First, Figure 14(a) shows the main memory capacity per
CPU core (ΣDRAMCap:ΣCoresCPU) and the HBM capacity per accelerator core (ΣHBMCap:ΣCoresACC) for
the 15 heterogeneous supercomputers. Noticeably, the per-CPU core memory capacity (3.5 GB on average)
is significantly larger, i.e., about 15×, than the per-accelerator core memory capacity (0.2 GB on average).
In addition, the per-CPU core memory capacity is particularly large in Sunway TaihuLight (8 GB), ABCI
(9.6 GB), Summit (11.6 GB), and Sierra (5.8 GB). As mentioned earlier in § 4.3.1, this dissimilarity in the
per-core memory capacity is attributed to the fundamental difference between CPUs and accelerators in the
processing architecture and target tasks. Further, HBM is also more expensive than DRAM, which will
likely limit its capacity.

To address such cost constraints, future systems may also consider deeper memory hierarchies, wherein
HBM and DRAM is supplemented with NVM (e.g., more HBM and very little to no DRAM, but with a
large node-local, byte-addressable NVM like 3D XPoint). Technologies are becoming available that can
directly populate GPU’s HBM from the node-local SSDs using GPUDirect methods, obviating the need to
load data onto DRAM and then copy to the GPU memory. However, this needs to be weighed against the
need to accommodate CPU-only jobs that will need enough DRAM. In any case, memory hierarchies are
likely to get even richer. While applications prefer a flatter, easily addressable memory address space,
budget constraints will eventually influence how deep and wide the memory hierarchy gets.
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Figure 15. Balance of the intra-node connectivity in 15 recent heterogeneous supercomputers. The
graph shows the bandwidth of each internal connection normalized to the system main memory band-
width. ACC denotes an accelerator such as GP-GPU.

Figure 14(b) depicts the memory bandwidth per Flops for CPUs and accelerators (ΣDRAMBW:ΣFlopsCPU

and ΣHBMBW:ΣFlopsACC). Here, we calculate the ratio of aggregated HBM bandwidth to the aggregated
Flops of accelerators (Table 3). Except for four supercomputers, i.e., Jaguar.2, Tianhe-1, Tianhe-1A, and
ABCI, the DRAM bandwidth to CPU Flops is about 3× greater than the HBM bandwidth to accelerator
Flops. However, this does not indicate the DRAM bandwidth is generally higher than the HBM bandwidth,
but is because of the higher processing power of accelerators (Flops count), as specified in Table 2 and 3.

4.3.3 Intra-node connectivity

In a heterogeneous supercomputer, a compute node houses additional hardware, e.g., GP-GPU, HBM,
which requires additional connections, e.g., data exchange between CPU and GP-GPU (denoted as ACC),
inside the node. Such internal connections, or intra-node connectivity, should be designed carefully to
prevent performance bottlenecks within a compute node. Therefore, we analyze the balance in the
intra-node connectivity for 15 heterogeneous systems. Figure 15 shows the bandwidth of five internal
connections namely HBM-to-ACC bandwidth, CPU-CPU bandwidth, CPU-ACC bandwidth, ACC-ACC
(peer-to-peer) bandwidth and injection bandwidth. All bandwidth values are normalized to the system main
memory bandwidth of the corresponding supercomputer. A missing bar indicates that the corresponding
connection is not applicable to the system. For instance, each compute node in Titan has a single CPU and
GPU, and thus CPU-to-CPU and ACC-to-ACC connections do not exist. However, each node in Summit
has two IBM P9 CPUs with CPU-CPU connectivity via IBM’s X-Bus, CPU to DRAM connectivity, six
Nvidia Volta GPUs with HBM, resulting in HBM-to-ACC and ACC-ACC connectivity (NVLink), and
CPU-ACC (NVLink) links. Overall, most internal connections within a compute node are slower than the
system main memory bandwidth, except for the HBM-to-ACC and the ACC-to-ACC bandwidth. On
average, the HBM-to-ACC bandwidth is 6.2× greater than the main memory bandwidth, while the
ACC-to-ACC bandwidth is almost comparable (i.e., 0.9×) to the main memory bandwidth). In addition, the
average CPU-to-CPU, CPU-to-ACC, and network injection bandwidth are 0.8×, 0.3×, and 0.5×,
respectively, of the main memory bandwidth. Since the HBM-to-ACC bandwidth is 6.2x DRAM
bandwidth, it might appear that the DRAM bandwidth is the bottleneck in transferring data between the
CPU and the ACC; however, it should be noted that the CPU-to-ACC (e.g., PCIe or NVLink) bandwidth is
0.3× DRAM bandwidth, indicating that it is in fact the slower link in the end-to-end data path.

An important measure for assessing the balance of the intra-node connectivity is the variance among the
multiple connections. In Table 3, the RSD column lists the relative standard deviation * of main memory,

*For a standard deviation (σ) and a mean (µ), the relative standard deviation (RSD) is σ
µ

.
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CPU-to-CPU, CPU-to-ACC, ACC-to-ACC, and network interconnect bandwidth. According to the RSD
values (lower means better balance), Nebulae (RSD=0.87) and Gyoukou (RSD=0.46) exhibit a
well-balanced intra-node connectivity. In contrast, Tianhe-1A (RSD=5.39) and ABCI (RSD=5.52) show
the most skewed intra-node connectivity ratios among the 15 heterogeneous supercomputers. For the 15
heterogeneous supercomputers, the ACC-to-ACC connection exhibits the largest impact on the
performance efficiency of the HPL benchmark, i.e., Rmax

Rpeak
, compared to the other individual connections.

Specifically, the correlation coefficient (ρ) between the ACC-to-ACC bandwidth and the performance
efficiency is about 0.6, about 2× greater than the average from all internal connection bandwidth values,
i.e., the average ρ from the main memory (ρ=0.1), HBM (ρ=0.3), CPU-to-CPU (ρ=0.4), CPU-to-ACC
(ρ=0.3), ACC-to-ACC (ρ=0.6), and network injection bandwidth (ρ=0.1). This is because the HPL
benchmark is a compute-intensive task [13], for which accelerators, e.g., GP-GPUs, are heavily utilized in
heterogeneous supercomputers (§ 4.3.1). Likewise, the HBM bandwidth (ρ=0.3) affects more than the
main memory bandwidth (ρ=0.1) does for HPL. Recent technologies, such as NVLink [14] and Infinity
Fabric [17, 7], directly address this observation, i.e., the necessity for fast communication among CPUs and
accelerators, by introducing a fast and specialized interconnect for accelerators instead of relying on the
generic PCIe interconnect.

It is more important to provision for the eventual application workload than to simply achieve a balance
across all of the intra-node connections. While a low RSD implies better balance across the links, it is more
important to better provision the links that will get utilized more, even it results in a higher RSD. Of
course, care should be taken to not let any one connection lag behind too much. Therefore, provisioning of
intra-node connectivity should carefully consider the application portfolio, their demands on the CPU/ACC
and the associated memory, the anticipated data movement between the CPU and ACC and between the
ACCs, and the potential cost to efficiently specify the bandwidth. For example, if the workload is expected
to transfer more data between the processors, it will be more important to provision a higher CPU-ACC
bandwidth compared to the other links, etc.

5. RELATED WORK

With the past 26 years of semi-annual reporting, the TOP500 [6] project has become the most reliable,
up-to-date source for studying the leading technical trends of the world’s most powerful supercomputers.
Particularly, Top500 adopts the High Performance Linpack (HPL) benchmark [13] to normalize and rank
the performance of supercomputers. Due to its long history and abundant resources, several prior reports
have studied historical and architectural trends in supercomputing by analyzing the data from the Top500
project. For instance, an earlier report in 2001 [22] summarized the supercomputing history based on the
Top500 data. A study in 2008 [21] also provided statistical summaries of supercomputer architectures and
future performance predictions based on the Top500 data. Similarly, a recent study [16] analyzed the
architectural trend of supercomputers until 2012, and anticipated the future trends based on the past
tendency. Compared to such prior studies, this paper not only provides the most up-to-date analysis of its
kind but also performs a deeper analysis for revealing the trend in the performance balance, which is often
overlooked in prior reports.

There are other ranked lists for complementing the sole performance metric of HPL [25], including the
Gordon Bell Prize [1] (focused on application performance), IO500 [4] (specialized in the I/O
performance), Green500 [3] (assessing the power efficiency), and Graph500 [2] (measuring the parallel
graph processing capability). Despite their usefulness, we do not include such projects in this study
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especially due to insufficient resources and history compared to the Top500 project.

There exist a few studies that have addressed the increasing architectural complexity in supercomputers
and the consequent importance of the performance balance in the system design [20, 26]. For instance, an
earlier study [20] indicated that the performance of subsystem components in a supercomputer, e.g.,
memory, disk, network, etc., should be comparable to the processing performance of CPU. However, the
study is dated and thus does not consider recent technologies such as accelerators or burst buffers. A recent
study [26] analyzes the architecture and the performance balance in three Department of Energy (DOE)
supercomputers, i.e., Titan, Summit, and Sierra. Despite its technical details, the study only discusses the
architectures of the three aforementioned supercomputers and is limited for demonstrating the overall trend
in supercomputing. Similarly, there exist other studies [11, 19] that primarily analyzed a single
performance aspect of supercomputers, e.g., accelerator, file system, interconnect network, etc. In contrast,
this paper thoroughly analyzes the architectural trend and performance balance in memory subsystem, file
system, interconnect network, and intra-node connectivity in recent supercomputers.

6. CONCLUSION

In this paper, we have analyzed over 10,000 supercomputers from Top500, and presented recent
architectural trends in leading supercomputers. Furthermore, we have analyzed the performance balance
trends for the top supercomputers in the past decade. Particularly, our analysis is focused on revealing the
trend in the performance balance, which has been disregarded in the prior analysis reports. We believe that
our analysis will provide a useful guideline to understand the architectural trends in leading
supercomputers and also to design next generation supercomputers.
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